skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hurtado-Lange, Daniela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In general, obtaining the exact steady-state distribution of queue lengths is not feasible. Therefore, we focus on establishing bounds for the tail probabilities of queue lengths. We examine queueing systems under Heavy Traffic (HT) conditions and provide exponentially decaying bounds for the probability P(∈q > x), where ∈ is the HT parameter denoting how far the load is from the maximum allowed load. Our bounds are not limited to asymptotic cases and are applicable even for finite values of ∈, and they get sharper as ∈ - 0. Consequently, we derive non-asymptotic convergence rates for the tail probabilities. Furthermore, our results offer bounds on the exponential rate of decay of the tail, given by -1/2 log P(∈q > x) for any finite value of x. These can be interpreted as non-asymptotic versions of Large Deviation (LD) results. To obtain our results, we use an exponential Lyapunov function to bind the moment-generating function of queue lengths and apply Markov's inequality. We demonstrate our approach by presenting tail bounds for a continuous time Join-the-shortest queue (JSQ) system. 
    more » « less
  2. Abstract Motivated by applications to wireless networks, cloud computing, data centers, etc., stochastic processing networks have been studied in the literature under various asymptotic regimes. In the heavy traffic regime, the steady-state mean queue length is proved to be $$\Theta({1}/{\epsilon})$$ , where $$\epsilon$$ is the heavy traffic parameter (which goes to zero in the limit). The focus of this paper is on obtaining queue length bounds on pre-limit systems, thus establishing the rate of convergence to heavy traffic. For the generalized switch, operating under the MaxWeight algorithm, we show that the mean queue length is within $$\textrm{O}({\log}({1}/{\epsilon}))$$ of its heavy traffic limit. This result holds regardless of the complete resource pooling (CRP) condition being satisfied. Furthermore, when the CRP condition is satisfied, we show that the mean queue length under the MaxWeight algorithm is within $$\textrm{O}({\log}({1}/{\epsilon}))$$ of the optimal scheduling policy. Finally, we obtain similar results for the rate of convergence to heavy traffic of the total queue length in load balancing systems operating under the ‘join the shortest queue’ routeing algorithm. 
    more » « less